Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474200

RESUMO

Intramuscular fat (IMF) is vital for meat tenderness and juiciness. This study aims to explore the IMF deposition mechanism and the related molecular markers in sheep. Two populations, Small-tail Han Sheep (STH) and STH × Suffolk (SFK) F1 (SFK × STH), were used as the research object. Histological staining techniques compared the differences in the longissimus dorsi muscle among populations. A combination of transcriptome sequencing and biological information analysis screened and identified IMF-related target genes. Further, sequencing technology was employed to detect SNP loci of target genes to evaluate their potential as genetic markers. Histological staining revealed that the muscle fiber gap in the SFK × STH F1 was larger and the IMF content was higher. Transcriptome analysis revealed that PIK3R1 and PPARA were candidate genes. Histological experiments revealed that the expressions of PIK3R1 mRNA and PPARA mRNA were lower in SFK × STH F1 compared with the STH. Meanwhile, PIK3R1 and PPARA proteins were located in intramuscular adipocytes and co-located with the lipid metabolism marker molecule (FASN). SNP locus analysis revealed a mutation site in exon 7 of the PIK3R1 gene, which served as a potential genetic marker for IMF deposition. This study's findings will provide a new direction for meat quality breeding in sheep.


Assuntos
Perfilação da Expressão Gênica , Cauda , Ovinos/genética , Animais , Cauda/metabolismo , Carne , Marcadores Genéticos , RNA Mensageiro/genética
2.
Front Vet Sci ; 9: 831519, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464379

RESUMO

This study aimed to identify genes related to sheep growth, development and meat quality. Small-tailed Han sheep (STH), and small-tailed Han sheep and Suffolk crossbred F1 (STH×SFK), were selected to determine the growth performance, slaughter performance, and meat quality. The longissimus dorsi muscle was selected for transcriptome sequencing, and the target gene was screened based on bioinformatics analysis; real-time fluorescent quantitative PCR (RT-PCR) and western blotting (WB) were conducted to verify the target gene. Locations of genes in tissues were confirmed via immunofluorescence. The results showed that the pre-slaughter live weight, bust circumference, slaughter performance, and marbling score of the STH×SFK population were significantly higher than those of the STH population (P < 0.01). Sequencing results showed that 560 differentially expressed genes (DEGs) were identified in the STH×SFK population, of which 377 exhibited up-regulated and 183 exhibited down-regulated expression levels. GO annotation revealed that DEGs could be classified into 13 cell components, 10 molecular functions, and 22 biological processes. The KEGG enrichment analysis showed that DEGs were mainly enriched in the Rap1 signaling pathway, Ras signaling pathway, and other pathways related to growth and meat quality. Based on the GO and KEGG analyses, four candidate genes related to sheep growth and meat quality, namely myostain (MSTN), interferon-related developmental regulator 1 (IFRD1), peroxisome proliferator activator receptor delta (PPARD), and myosin light chain 2 (MLC2 or MYL2), were screened. The expression levels of genes and proteins were verified via RT-PCR and WB, and the results were consistent with the trend of transcriptome sequencing. Immunofluorescence results showed that IFRD1 was expressed in the cytoplasm and nucleus, and MYL2 was expressed in the cytoplasm. This study revealed the mechanism of gene regulation of sheep growth and development at the molecular level and provided a theoretical basis for studying sheep genetics and breeding.

3.
Anim Biosci ; 35(8): 1129-1140, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34991197

RESUMO

OBJECTIVE: With improvements in living standards and increase in global population, the demand for meat products has been increasing; improved meat production from livestock could effectively meet this demand. In this study, we examined the differences in the muscle traits of different male crossbred sheep and attempted to identify key genes that regulate these traits. METHODS: Dubo sheep×small-tailed Han sheep (DP×STH) and Suffolk×small-tailed Han sheep (SFK×STH) were selected to determine meat quality and production performance by Masson staining. Transcriptome sequencing and bioinformatic analysis were performed to identify differentially expressed genes (DEGs) related to meat quality. The presence of DEGs was confirmed by real-time polymerase chain reaction. RESULTS: The production performance of SFK×STH sheep was better than that of DP×STH sheep, but the meat quality of DP×STH sheep was better than that of SFK×STH sheep. The muscle fiber diameter of DP×STH sheep was smaller than that of SFK×STH sheep. Twenty-two DEGs were identified. Among them, four gene ontology terms were related to muscle traits, and three DEGs were related to muscle or muscle fibers. There were no significant differences in the number of single nucleotide mutations and mutation sites in the different male parent cross combinations. CONCLUSION: This study provides genetic resources for future sheep muscle development and cross-breeding research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA